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Abstract

Characterizing the force of infection (FOI) is an essential part of planning cost effective control strategies for zoonotic
diseases. Echinococcus multilocularis is the causative agent of alveolar echinococcosis in humans, a serious disease with a
high fatality rate and an increasing global spread. Red foxes are high prevalence hosts of E. multilocularis. Through a
mathematical modelling approach, using field data collected from in and around the city of Zurich, Switzerland, we find
compelling evidence that the FOI is periodic with highly variable amplitude, and, while this amplitude is similar across
habitat types, the mean FOI differs markedly between urban and periurban habitats suggesting a considerable risk
differential. The FOI, during an annual cycle, ranges from (0.1,0.8) insults (95% CI) in urban habitat in the summer to (9.4, 9.7)
(95% CI) in periurban (rural) habitat in winter. Such large temporal and spatial variations in FOI suggest that control
strategies are optimal when tailored to local FOI dynamics.
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Introduction

The force of infection (FOI) is a crucial epidemiological

parameter and characterizing its dynamics is an essential part of

planning cost effective control strategies for infectious diseases [1].

Mechanistically, disease intervention strategies are typically

targeted at decreasing the per capita infection rate. If successful,

this will then cause a decrease in observed prevalence. As such,

quantification of the FOI provides a key measure of efficacy when

assessing or comparing interventions [2]. The FOI can be

extremely difficult to estimate directly, i.e. observationally, in

wildlife populations. Even in human populations this is not without

considerable challenges, and requires accurate longitudinal

monitoring of the target population in order to capture all new

infections which arise [3]. An alternative approach is to estimate

the FOI indirectly, through access to prevalence data, in

conjunction with either an explicit mathematical model describing

the disease transmission processes, or else some assumed disease

risk function [4,5].

Foxes are typical definitive hosts for the parasite Echinococcus

multilocularis, with different rodent species being the primary

intermediate host in which the alveolar hydatid cysts grow. In

humans, which are aberrant hosts, this parasite causes the

important emerging zoonosis alveolar echinococcosis (AE). This

is a serious disease with a high fatality rate in the absence of

appropriate treatment [6]. In Europe there have been increasing

numbers of AE cases reported in the Baltics [7], Poland [8],

Austria [9] and in Switzerland [10]: the latter associated with an

increase in fox populations. The disease is also emergent in central

Asia with a huge increase in the numbers of human cases in

Kyrgyzstan recorded in recent years [11]. This disease also has a

considerable impact on human health in Western China,

particularly on the Tibetan plateau [12]. Alveolar echinococcosis

is also an emerging public health concern in North America due,

at least in part, to the increasing urbanization of wild canids [13].

Red foxes (Vulpes vulpes) are high prevalence hosts of E. multilocularis

[14], where zoonotic transmission may occur through environ-

mental contamination [15] or through contaminated food [16]. In

addition, dogs are susceptible definitive hosts [17] and may be very

important for transmission to humans where prevalences in dogs

are high, such as in China [18] or central Asia [19]. In Europe,

dogs are low pravalence hosts [20], but nevertheless may pose a

high risk of introducing the parasite in non endemic countries such

as the UK if appropriate treatment is not given when dogs enter

the country [21].

In terms of potential control measures for reducing the risk of

AE, a number of different studies have investigated anthelmintic

baiting in foxes [22]. The impact of such approaches on reducing

prevalence appears to strongly depend on the specific design used,

in relation to how the baits are delivered and choices of location,

and frequency. In Switzerland, year round monthly anthelmintic

baiting is an effective control measure in foxes [22]. The E.

multilocularis transmission cycle is, however, dynamically highly

complex with many known temporal-spatial heterogeneities (for

example [23]). Adopting, therefore, a baiting strategy in close

concordance with FOI dynamics could optimize existing inter-

vention strategies. In planning such intervention studies knowledge

of the dynamics and magnitude of the FOI can be invaluable, as

this potentially allows the frequency of baiting to be tailored to the

changing levels of exposure throughout time and across space.

This may enable considerable cost saving, as opposed to, for

example, monthly all year round baiting across all habitat types.
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In Switzerland it has been shown that there are considerable

differences in the spatial and seasonal distribution of the

prevalence of E. multilocularis in definitive hosts [14,15] and

intermediate hosts [23]. These studies indicated that 129 of 857

Arvicola terrestris were infected of which 12 harboured protocolices.

Ten of these animals had between 61 and 452,000 protoscolices.

Seasonal patterns of infection in intermediate hosts were seen with

highest prevalences seen in over-wintered animals. Thus seasonal

anthelmintic treatment of foxes, with a focus on the autumn and

winter months, is likely to be a more efficient strategy in reducing

the parasite biomass [23]. Likewise although fox densities are

highest in urban settings, they consume fewer rodents and have a

greater reliance on anthropomorphic food supplies compared to

rural foxes [24], which is likely to significantly affect transmission

dynamics on a spatial scale. Consequently, the intensity of

intervention strategies could also be tailored to exploit these

spatial differences. Such differences in prevalences clearly indicate

that relative differences in the FOI exist between rural and urban

areas, and between winter and summer seasons.

We develop a statistically robust quantitative characterization of the

FOI for E.multilocularis in foxes to address three specific research

questions: i) firstly, is the FOI constant or dynamic (with age of the

host), and what is its value accounting for complexities such as statistical

uncertainty; ii) secondly, how much does FOI vary quantitatively with

habitat type, in particular between more or less urbanized regions; iii)

and thirdly how much does the FOI of infection vary quantitatively on

a temporal basis between winter and summer seasons.

Methods

The key methodological aspect of this study is to identify an

epidemiologically useful disease transmission model for E.multi-

locularis in foxes. A model whose structure can be objectively

justified, and whose parameter estimates provide tangible insight

into the key infection processes. Three sources of information are

available to support model development: i) prevalence data from a

previously presented observational study [24]; ii) approximate

estimates as to likely survival times of E. multilocularis in foxes from

experimental work [17]; and iii) existing transmission modelling

frameworks for Echinococcus granulosus transmission in sheep and

dogs [25]. Using [25] as a starting point, we identify a process

model whose structure is an optimal fit to the prevalence data from

[24], whilst making use of the parameter estimates from [17] as

expert knowledge. Following [25] we utilize ordinary differential

equations (ODEs) to describe the transmission dynamics, and to

take advantage of prior knowledge from [17] we adopt a Bayesian

paradigm [26] for all model fitting and statistical inference.

Study data
The data to which we fit our transmission models is an

extension of that previously described in [14] and [24], and

includes only samples taken prior to the anthelmintic baiting

intervention described in [27]. Samples were collected from in or

around the city of Zurich in Switzerland. Three key variables were

utilized: i) presence (absence) of E.multilocularis infection based on

necropsy (details given in [14,24]); ii) the age of each fox, and

following previous studies, and as described in [14], cubs were

assumed to be born on 1st April and age determination of foxes

sampled after 1st July was done via examination of teeth (details

given in [14]). Along with the date of death (which is known as

these animals were culled by hunters) and the weight at death,

each animal’s approximate age in years and days was estimated.

The final variable utilized was habitat type, where this comprised

three zones reflecting differing degrees of urbanization: urban;

border; and periurban. The characteristics of these are described

in detail in [27]. The urban zone comprises of mostly residential

dwellings with relatively few green spaces, the periurban zone is

rural comprising of forests, fields, pastures, and meadows. The

border zone separates urban from rural, and was defined as

extending 250 meters from the edge of the urban area and into

250 meters of the periurban surroundings. The border zone

includes largely residential areas, public spaces, allotments and

pastures. The data used in the study is in the Supporting

Information Data S1. Out of the n~458 foxes aged three years or

less in the study data, 160 were sampled in the periurban zone,

167 in the border zone and 131 in the urban zone. The overall

observed prevalence across all 458 animals was 42.1%, within the

periurban, border and urban zones this was 65.6%, 38.9% and

17.6% respectively. The median age across these 458 animals was

0.80 years. In the periurban, border and urban zones the median

respective ages were 0.87, 0.77 and 0.59 years.

Disease transmission model
The most general form of hypothesized transmission model we

consider for E. multilocularis is given in Figure 1. The structure of

this model is based on initial work by [25] which has provided a

basis for many subsequent disease modelling studies involving in E.

granulosus and E. multilocularis, (e.g. [5,28]). Figure 1 depicts an

intuitively reasonable representation of the possible disease states

and flows between them based on current known biology of

E.multilocularis in foxes. The model dynamics here are over age of

the host (foxes), as is typical when modelling E. multilocularis or

E.granulosus. We assume a fully susceptible population at birth, i.e.

no vertical transmission and therefore X0(a)~1. This dynamic

system can be described in a series of ordinary differential

equations (ODEs).

State variables are X0(a), X (a), Y0(a) and Y (a), where X0(a)
represents the proportion of hosts which are not infected and not

immune at age a, X (a) is the proportion of hosts which are infected

and not immune at age a. Variables Y0(a) and Y (a) are defined

similarly but for cohorts –not infected and immune} and –infected

and immune} respectively. The following system of ordinary

differential equations defines the dynamics over age of this system:

dX0

da
~{bX0zmXzcY0,

dX

da
~b(1{a)X0{(mzba)XzcY ,

dY

da
~baX0zbaX{(czm)Y ,

Author Summary

Human alveolar echinococcosis (AE) is caused by the fox
tapeworm E. multilocularis and has a high fatality rate if
untreated. The frequency of the tapeworm in foxes can be
reduced through the regular distribution of anthelmintic
baits and thus decrease the risk of zoonotic transmission.
Here, we estimate the force of infection to foxes using a
mathematical model and data from necropsied foxes. The
results suggest that the frequency of anthelmintic baiting
of foxes can be optimised to local variations in transmis-
sion that depend upon season and type of fox habitat.

Echinococcus multilocularis Force of Infection
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dY0

da
~mY{cY0

with initial conditions: X0(0)~1, X (0)~0, Y0(0)~0 and Y (0)~0.

Parameter b denotes infection pressure (force of infection - FOI),

measured in insults (exposures) per year; a is the probability of

immunity on exposure; c is the duration of host immunity; m is the

parasite death rate. Note that to simplify the notation we have

suppressed any explicit dependency of the parameters on age, e.g.

b(a) where FOI is dependent upon age, but such dependencies are

considered during the model selection process making this

potentially an inhomogeneous ODE system.

Model fitting and statistical analyses
The observed data comprise of randomly sampled binary

observations each denoting whether a fox was infected (not

infected). This gives a sampling model comprising of Bernoulli

trials where the likelihood function for n observations is

Pn
i~1 p(ai)

Ii (1{p(ai))
1{Ii , where ai is the age of the ith fox in

the data, Ii is an indicator variable where Ii~1 if the ith fox is

infected and Ii~0 otherwise, and p(ai)~X (ai)zY (ai) is the

prevalence in foxes of age ai. The ODE transmission model

provides p(a) which will generally be some unknown function of

the epidemiological parameters of interest, p(a)~f (a,b,c,m,a)
where (Figure 1): a is the probability of immunity on exposure; b
the force of infection (measured in insults per unit time); c the rate

of loss of immunity; and m the parasite death rate. It is not

necessary to know function f explicitly, all that is required is that

for any given values of a,b,c,m, along with appropriate initial

conditions for state variables X0, X , Y0, Y , an estimate for p(a) for

any suitable value of a can be computed. This is readily possible

using standard numerical techniques for solving ODEs (e.g. [29]).

The likelihood function (| parameter priors as we are using

Bayesian inference) can therefore be evaluated, and thus the key

unknown epidemiological parameters of interest such as b can be

estimated from the study data —conditional on the chosen form of

ODE model.

Figure 1. Transmission model for E.multilocularis in foxes. State variables are: X0(a), X (a), Y0(a) and Y (a), where X0(a) represents the
proportion of hosts (foxes) which are not infected and not immune at age a, the other state variables are similarly defined. Parameter b denotes the
infection pressure (force of infection), measured in insults (exposures) per year; a is the probability of immunity on exposure; c is the rate of loss of
host immunity; m is the parasite death rate.
doi:10.1371/journal.pntd.0002731.g001

Echinococcus multilocularis Force of Infection
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Gaussian distributed prior distributions for parameters b and c
were used, where these were each implemented within a log link

function. For the probability parameter a, a logit link function was

used, again with a Gaussian prior distribution. Highly diffuse

priors were used for all parameters except m, where these each had

a mean of zero and standard deviation of
ffiffiffiffiffiffiffiffiffiffi
1000
p

. In effect, this

introduces no prior biological knowledge into the estimation of

these parameters. For m, a Gaussian prior (again on a log link) was

used and chosen via expert opinion based on data presented in

[17]. The latter study comprised of longitudinal observation of five

foxes experimentally infected with E. multilocularis. The parasite

burden in 80% (three of five) animals was very low at 90 days,

suggesting an 80th percentile for the death rate of approximately

ƒ4 per year, in addition we consider that parasites in 50% of

infected animals may survive to around 120 days (death rate ƒ3
per year), with 2.5% possibly surviving beyond 150 days (death

rate ƒ2:4 per year). A Gaussian distribution on a log link with a

mean of 1.2 and standard deviation of 0:2, gives quantiles for m (on

real scale) of approximately 2.24 (2.5%), 3.32 (50.0%) and 3.93

(80%) per year, which we choose as an informative prior for m. In

addition we also examine a wider, but still highly informative

prior, with a mean of 1.3 and standard deviation of 0.3 which has

corresponding quantiles of 2.04 (2.5%), 3.67 (50.0%) and 4.72

(80%) per year. Sensitivity to prior assumptions is a crucial aspect

of Bayesian inference, so we also present modelling results which

use the same highly diffuse (uninformative) prior for m as for b and

c.

Bayesian model selection — used to identify an optimal ODE

transmission model — was performed using the marginal

likelihood goodness of fit metric. This is equivalent to comparing

Bayes factors between two models when each has an equal a priori

probability of being the preferred model. The marginal likelihood

is generally more difficult to compute than other commonly used

metrics, such as the Bayesian Information Criterion (BIC) or

Deviance Information Criterion (DIC), but is the standard and

preferred theoretical choice in Bayesian inference [26,30]. This

metric allows Bayesian model selection to be interpreted as simply

an extension of maximum likelihood model selection, where

evidence (i.e. statistical support) for any given model is that

obtained by multiplying the best fit likelihood by the ‘‘Occam

factor’’, so-named as this metric has been shown to be

conceptually consistent with Occam’s Razor (as explained in

[30]). The marginal likelihood was computed using Laplace

approximations, a standard numerical technique in statistical

inference [31,32]. These were also used to estimate posterior

distributions for the epidemiological parameters. All numerics

were implemented in R [33] using a number of well tested internal

functions borrowed from the R abn library [34]. See Supporting

Information Text S1 for technical details. An approximate guide

for the size of differences in marginal likelihoods which may be

considered notable is given in Table 2.1 page 27 in [26]. Using the

terminology from [26], a difference of 0{2 is suggested as weak

support for the model with higher marginal likelihood, 2{6 is

support, 6{10 is strong evidence and greater than 10 very strong

evidence.

Results

We first present a brief exploration of the observed prevalence

data by age. This is prudent as it may suggest refinements in the

parametrization of the process models under consideration. Next

we compare the goodness of fit of a range of models with different

biological assumptions, for example whether the observed data

support the presence of immunity, and if so, whether this is lifelong

or transient. We then quantify the key epidemiological parameters

in our chosen model, in particular the FOI, b(a). Heterogeneity is

then introduced into this model by allowing the force of infection

to differ across one or more of the three different habitat types,

where further model selection is used to identify a preferred

heterogeneous model. Our results conclude with a comparison of

FOI estimates across the different habitat zones.

Exploratory analyses by age
Exploratory analyses of the observed prevalence data is

illustrated in Figure 2. Choosing a smoothing parameter of

f = 0.072 in (lowess() in R) gives smoothed data which appear

relatively consistent with the observed data in Figure 2 (a), and

provides a more refined visualization of the data rather than in 30-

day blocks. Figure 2 (a) and 2 (b) suggest that it may be appropriate

to consider the inclusion of periodicity into one or more of the

epidemiological parameters in our transmission model.This

suggests that for our model to adequately capture the gross

dynamic features of disease transmission we should consider both

age independent FOI, b(a)~b0, and also FOI parametrized as a

function of age, b(a)~g(a), with g(a) as some polynomial or

periodic function. It is clear from Figure 2 (c) that there appears

very little identifiable dynamic structure after 36 months, which is

perhaps unsurprising given this only comprises some 14% on

observations, and thus very sparse sampling at these older

ages.This is consistent with life expectancy estimates for foxes

which suggest that only a small proportion of foxes survive beyond

2–3 years years in the wild [35]. As foxes aged less than three years

present the vast majority of zoonotic risk, combined with foxes of

older ages being sampled very sparsely in the data, subsequent

analyses focus on foxes less than three years of age. For

completeness some modelling results are also presented consider-

ing all ages. Figure 2 (d) shows the smoother applied to data of all

ages.

Determining a parsimonious transmission model
A range of transmission models of increasing complexity were

fitted to the observed data (Table 1) with separate results shown for

the two informative priors for m. See Supporting Information Text

S2 for results using an uninformative prior for m, and Supporting

Information Text S3 for the equivalent of Table 1 but for the

models fitted to data from foxes of all ages. Estimates of the

posterior modes for all the parameters in models presented in

Table 1 can be found in Supporting Information Text S4.

Evaluation of immunity
We commenced with a model comprising no immunity (Model

1-C), i.e. only state variables X0 and X , and constant FOI. This

was followed by similar models but where the FOI was

parametrized as a linear (1-L), quadratic (1-Q) and periodic (1-P)

function of age, with the latter using a sinusoidal forcing term as is

commonly used for diseases with periodic transmission rates (e.g.

measles [36]). The particular form of sinusoidal function used was

logfb(a)g~b0zb1 sin 2p a{
exp(as)

1zexp(as)

� �� �
. A log link func-

tion ensures that all estimates of b(a) are positive, and also avoids

the potentially complex task of having to specifying a proper (i.e.

integrates to unity) joint parameter prior for b0, b1 and as which

would otherwise be required to ensure that the posterior

distribution for b(a) was positive. This parametric form of b(a)
has a period of one year, with (on a log scale) b0 denoting the

lifetime average (or baseline) FOI, b1 the amplitude beyond the

lifetime average. The term exp(as)=(1zexp(as)) is to allow, if

Echinococcus multilocularis Force of Infection
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Figure 2. Exploratory analyses. Panel (a) shows observed prevalence across age groups of 30-days blocks up to age 36 months (where 1
month = 30 days). Panel (b) shows smoothed prevalence using a locally weighted regression smoother (lowess() in R) applied to the 0/1 observation
for all individuals aged less than 3 years. Panel (c) shows observed prevalence across age groups of 30-days blocks for all ages (maximum 108 months
where again one month = 30 days). Panel (d) shows the smoother applied to data of all ages.
doi:10.1371/journal.pntd.0002731.g002

Table 1. Model goodness of fits.

Model Description Prior for m Log marginal likelihood

1-C no immunity (a~0) Constant FOI: log b(a)~b0 N(1:2,0:2) N(1:3,0:3) 2305.3 (DML~28:2)
2304.3 (DML~26:2)

1-L no immunity (a~0) Linear FOI: log b(a)~b0zb1a N(1:2,0:2) N(1:3,0:3) 2309.3 (DML~36:2)
2308.9 (DML~35:4)

1-Q no immunity (a~0) Quadratic FOI: log b(a)~b0zb1azb2a2 N(1:2,0:2) N(1:3,0:3) 2308.1 (DML~33:8)
2308.3 (DML~34:2)

1-P
no immunity (a~0) Periodic FOI: logfb(a)g~b0zb1 sin 2p a{

exp(as)

1zexp(as)

� �� �
N(1:2,0:2) N(1:3,0:3) 2291.3 (DML~0:2)

2291.2 (DML~0:0)

2
lifelong immunity (c~0) periodic FOI: logfb(a)g~b0zb1 sin 2p a{

exp(as)

1zexp(as)

� �� �
N(1:2,0:2) N(1:3,0:3) 2294.3 (DML~6:2)

2294.6 (DML~6:8)

3
transient immunity (c=0) periodic FOI: logfb(a)g~b0zb1 sin 2p a{

exp(as)

1zexp(as)

� �� �
N(1:2,0:2) N(1:3,0:3) 2294.2 (DML~6:0)

2296.0 (DML~9:6)

All parameters other than m have diffuse priors as given in the text. The DML denotes twice the difference between the best log marginal likelihood and each of the
other models.
doi:10.1371/journal.pntd.0002731.t001

Echinococcus multilocularis Force of Infection

PLOS Neglected Tropical Diseases | www.plosntds.org 5 March 2014 | Volume 8 | Issue 3 | e2731



necessary, a time shift compared with the standard sinusoidal

function. A logit link function is used here as we are only interested

in time shifts in the interval [0,1]. Parameters b0,b1 and as each

have diffuse Gaussian priors with means of zero and standard

deviations of
ffiffiffiffiffiffiffiffiffiffi
1000
p

.

From Table 1 is it clear that periodic infection pressure is

strongly supported over the other forms. Retaining periodic

infection pressure, we next consider models with a more complex

cohort structure comprising of all four state variables

fX0,X ,Y ,Y0g, allowing for the presence of lifelong immunity

(Model 2), and transient immunity (Model 3 and the ‘‘full’’ model

in Figure 1). It is again apparent from Table 1 that the observed

data are less supportive of these two more complex models, and

hence there is little evidence in the data for the presence of

immunity.

Based purely on the goodness of fit results in Table 1 our

preferred model is Model 1-P. The next more complex best fitting

model was Model 2. These two models cross a rather large

biological divide — no immunity verses lifelong immunity. To

provide additional empirical justification for choosing Model 1-P

over Model 2 we briefly examine the magnitude of the parameters

in the latter model using the posterior modes (which are estimated

as part of the marginal likelihood computation). In Model 2, using

the prior for m with mean of 1.2, we have a logit for a of 25.3

giving an approximate probability of becoming immune per

exposure of 0.005. Posterior mode estimates for the FOI in this

model, b(a), gives an (approximate) average lifetime number of

exposures, exp(b0), of &2 per year. Based on the observed

prevalence data, then suppose that 86% of animals have a lifetime

of at most three years and the remaining 14% live for a full nine

years. Then, in a population of 100 animals these parameters give

a total of 768 exposures for all animals over their entire lifetime.

For a~0:005 this then gives, on average, at most only four

animals becoming immune during the entire lifetime of the

population. This is a very fine scale population change, and it is

therefore of little surprise that, statistically, the empirical data are

not supportive of the presence of immunity.

Quantification of force of infection
Having arrived at a preferred transmission model we now use

this to provide the first of our main results: quantification of the

FOI, i.e. b(a). Of most interest here are the baseline and

amplitude parameters b0 and b1, specifically we wish to estimate

the joint marginal posterior distribution for these two parameters

and then examine the range of values for the FOI which arise

when (b0,b1) are within their joint 95% posterior confidence

interval (to account for sampling uncertainty). It would be possible

to consider a joint density comprising of all three parameters in

b(a); b0,b1,as. It is, however, difficult to visualize such a density

(with four dimensions - three parameters plus the density estimate),

and as epidemiological interest is focused on (b0,b1) we therefore

marginalize out as and m giving a joint posterior density for

(b0,b1). Note that this distribution, therefore, also incorporates the

statistical uncertainty in as and m (i.e. the latter are not simply fixed

at constant values).

Before computing the joint marginal density for (b0,b1) we first

summarize b0, b1, m and as through their marginal posterior 95%

confidence intervals (Supporting Information Text S5 provides full

marginal posterior densities). Using the informative prior for m
with mean = 1.2 and sd = 0.2 gives (on the real scale)

b0~(1:32,2:79), b1~(2:27,4:55), as~(0:35,0:48) and

m~(2:38,4:82), with approximate medians of b0~1:92,

b1~3:14, as~0:42; and m~3:36. The corresponding estimates

when using the informative prior for m with mean = 1.3 and

sd = 0.3 are b0~(1:34,3:34), b1~(2:29,4:55), as~(0:35,0:49)
and m~(2:30,6:14), with approximate medians of b0~2:087,

b1~3:17, as~0:42; and m~3:74. Using the diffuse prior for m
gives b0~(1:16,4:19), b1~(2:33,4:51), as~(0:38,0:54) and

m~(1:69,8:25), with approximate medians of b0~2:24,

b1~3:20, as~0:50; and m~3:98.

A contour plot of the joint marginal posterior density for

(b0,b1), Figure 3 panel a, clearly shows strong dependency

between b0 and b1 — when one is lower the other is higher and

vice-versa. This demonstrates why it is more intuitively reasonably

to consider these parameters jointly. To visualize the statistical

uncertainly in our estimate of FOI over age we choose two points

pt1,95%~(b0,b1) and pt2,95%~(b0,b1), which lie on the contour

defining the 95% region for this two-dimensional density. We then

solve the ODE model for these sets of parameter estimates (the

other two parameters are set to their modal values). These two

‘‘extreme’’ sets of parameters provide an approximate 95%

confidence interval for the mean force of infection over age

(Figure 3 panel b), and similarly the mean prevalence (Figure 3

panel c). We estimate the (mean) minimum FOI during an annual

population cycle as 0.27 to 1.27 insults (with 95% confidence), and

rising to a maximum of between 6.87 and 7.05 insults (with 95%

confidence).

Comparison between urban and rural habitats
The summary statistics suggest that there may be a difference

between the prevalence of E.multilocularis in populations of foxes

within the different habitat types. To provide a measure of

statistical rigour to these observations we fit Model 1-P to these

data, where now heterogeneity is introduced into b(a) to allow the

force of infection to vary across each of the different zones. If the

inclusion of such heterogeneity improves the model goodness of fit

then that provides formal statistical evidence of a different in FOI

between habitats.

We consider two versions of Model 1-P, Model 1-P0 and Model

1-P01. The first allows the baseline force of infection, b0, to vary

with zone and assumes the amplitude b1 is homogeneous across all

zones. The second model allows both b0 and b1 to vary within

each habitat zone. For simplicity, the period shift as and parasite

death rate m are assumed homogeneous over all three zones.

Model 1-P0 has a goodness of fit of 2285.4, with Model 1-P01

having 2292.6. This is strong evidence that: i) there is a difference

in baseline force of infection between different habitat zones; ii)

there is no evidence of any difference in periodic amplitude

between the different habitats. We use, therefore, Model 1-P0 to

quantify differences in FOI across habitat.

Following a similar approach as for our analyses of Model 1-P,

we derive approximate confidence intervals for the force of

infection using the joint marginal posterior densities for b0 and b1,

where this time we have three, two dimensional distributions,

(bU
0 ,b1), (bB

0 ,b1), (bP
0 ,b1) for U urban, B border and P periurban.

First we summarize bU
0 ,bB

0 ,bP
0 ,b1,m and as through their marginal

posterior 95% confidence intervals (Supporting Information Text

S6 provides full marginals posterior densities). Using the informa-

tive prior for m with mean = 1.2 and sd = 0.2 gives (on the real

scale) bU
0 ~(0:45,1:27), bB

0 ~(1:20,2:94), bP
0 ~(2:42,6:18),

b1~(1:48,3:2), as~(0:29,0:47) and m~(2:29,4:50), with approx-

imate medians of bU
0 ~0:79, bB

0 ~1:87, bP
0 ~3:79, b1~2:13,

as~0:38 and m~3:14. It is clear that the marginal densities in the

urban and periurban habitats do not overlap at the 5%

significance level. Supporting Information Text S7 provides a

comparison of the modal estimates of prevalence over age in each

of the three habitat types.
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Finally we consider the statistical uncertainty in our FOI

estimates over age within each habitat type. Figure 4 panel a is

similar to Figure 3 panel a and shows the joint marginal posterior

densities for (bU
0 ,b1), (bB

0 ,b1), (bP
0 ,b1). As for the one-dimensional

marginal estimates of b0 in each habitat, it is very clear that the

FOI baseline is statistically different between the urban and

periurban zones i.e. the 95% contours do not overlap. The FOI in

the border zone is indistinguishable from that in either the

periurban or rural zones. We repeat the same approach to

estimate approximate 95% confidence intervals for the FOI within

each habitat as for the homogeneous habitat model (Model 1-P),

this is shown in Figure 4 panel b. These uncertainty limits are

clearly rather more approximate here than for those in Model 1-P

— as can be seen by the fact that the urban and periurban

trajectories overlap slightly, while they are clearly very distinct at

the 95% contours in Figure 4 panel a. The limits for the border

habitat also cross each other. This behavior is not entirely

unexpected in that we are collapsing a six dimensional posterior

probability distribution (comprising of all the parameters in Model

1-P0) into effectively only two dimensions. This gives joint

statistical estimates which are far more manageable, but as we

see here, does makes the resulting confidence limit estimates rather

approximate. We estimate with approximate 95% confidence that

the (mean) minimum FOI during an annual cycle in the urban

habitat is 0.1 to 0.8 insults, rising to a maximum of between 1.6

and 2.0 insults. For the periurban habitat we have minimum and

maximum force of infections of 0.7 to 3.9 insults and 9.35 to 9.7

insults respectively. Despite these minor statistical discrepancies in

relation to the differing comparisons of confidence limits, the

overall result is very clear: there is a large difference in FOI during

annual cycles in the urban and periurban habitats.

Discussion

The FOI is a key parameter in models estimating the

effectiveness and cost effectiveness of infectious disease prevention

[37]. Using a simple —and empirically justified — mathematical

model we have estimated the force of E. multilocularis infection in a

fox population in Switzerland, and shown how much it

quantitatively varies with season and geography, i.e. through time

and across space.

There have been a number of trials aimed at reducing the

prevalence of infection in foxes by distributing baits containing the

anthelmintic praziquantel. Several studies, in Switzerland and in

Germany, with baiting intervals of 12 times per year, resulted in a

substantive decline in the numbers of foxes infected (reviewed in

Figure 3. Transmission Model 1-P. Panel (a): joint marginal posterior density for (b0,b1) on log scale. The red contour is the 95% limit and the two
points marked are those used to produce approx. 95% confidence intervals in panels b and c. Panel (b): dynamics of force of infection by age, 95% CI
is for the mean force of infection at age a. Panel (c): Smoothed observed prevalence and prevalence predicted by Model 1-P, 95% CI are for the mean
prevalence at age a. All results use the informative prior for m with mean = 1.2 and sd = 0.2.
doi:10.1371/journal.pntd.0002731.g003
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[22,38,39]). These studies typically resulted in a decrease in

prevalence from 35% and 67% to between 1% and 6%. Provided

most foxes are treated, this would be expected as the baiting

interval is similar to the prepatent period of E. multilocularis in foxes

and hence it should prevent transmission. Other baiting

campaigns have used lower frequencies and have had variable

results. For example in Germany a baiting frequency of 5 times

per year resulted in a decrease in the prevalence in foxes of 32%

(95% CIs 16–52) to 4% (95% CIs 2–7). Other studies with less

frequent baiting intervals have not shown such a clear reduction.

Our estimates and modelling methodology for computing the

pre-intervention baseline FOI provides a rigorous framework

which can be used to optimize baiting intervals, in order to trade

off the need to reduce infection in foxes, and thus the potential for

zoonotic transmission, and the cost of implementing such

intervention programmes. Based on Swiss data we estimate that

there is a high infection pressure in the winter months for non

urban foxes of close to 10 infections per year (i.e. greater than 1

per month), baiting at monthly intervals would therefore be

required. This conclusion is in accordance with the results of an

epidemiological study on the intermediate hosts which showed

most rodents become infected during the winter [23]. However, in

Figure 4. Heterogeneous habitat transmission Model 1-P0. Panel (a): joint marginal posterior densities for (bU
0 ,b1), (bB

0 ,b1), (bP
0 ,b1) on log

scale. The red contour is the 95% limit and the two points marked are those used to produce approx. 95% confidence intervals in panel b. Panel (b):
dynamics of force of infection by age, approx 95% CI is for the mean force of infection at age a (see main text for explanation of why these lines
cross). All results use the informative prior for m with mean = 1.2 and sd = 0.2.
doi:10.1371/journal.pntd.0002731.g004
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the summer when the FOI is lowered to between 0.7 to 3.9 insults

per year, then decreasing the baiting frequency to once every three

months would be more appropriate. In addition, baiting frequen-

cy, at least in theory, could be further reduced in urban habitats

where the FOI is between 0.1–0.8 and 1.6–2.0 insults per year.

However in practice, this would be a challenge in Zürich as the

spatial separation of such zones is as little as 500 meters. A

decreased cost of baiting foxes increases the cost benefit as a

similar reduction in the numbers of human AE cases would be

expected to be achieved as earlier suggested [15] based on

epidemiological data [23,24]. Theoretical models [40,41], have

also suggested seasonal transmission of E. multilocularis in Japan.

However, our model is also challenged with field data, where as

the conclusions of previous models are based on simulations. In

addition, our model does not depend upon parameters from the

intermediate host and therefore should be applicable for FOI

calcualtions in any area where suitable prevalence data from foxes

is available.

Our estimates of FOI are dependent on the estimate of the life

expectancy of the infection in the definitive host. Experimental

infections of foxes indicate that parasites can survive in foxes

beyond 90 days [17], although most parasites are lost earlier. This

model is based on the presence or absence of parasites, with even a

single parasite being found in a fox defining the fox as infected.

Therefore an estimated life expectancy of 120 days was used in the

model as being a reasonable period extrapolating from the data of

[17]. By which half of foxes might be estimated to be free of

parasites. If the life expectancy is less then the FOI will be higher

than reported here. The corollary is also true. A longer life

expectancy would result in a lower FOI. It is possible that low

worm burdens in foxes could persist for some considerable time as

all foxes in the experimental study by Kapel and others [17]

remained infected at 90 days, albeit with low burdens. However, if

this were the case, decreasing baiting frequency in the summer

months and in urban areas, as suggested would still be effective in

lowering the parasite biomass, as the numbers of infections per

year would be lower than calculated here. However, as infection is

highly overdispersed only a few infected foxes will be responsible

for most of the transmission. Using a non zero threshold worm

burden for foxes that are relevant to transmission could give

important information with regard to the FOI in heavily infected

foxes. An alternative approach, in a future study, using abundance

data may help clarify this issue. An obvious related key question is

quantifying the transmission probability from environmental

contamination, e.g. via the distribution of fox faeces, to human

infection.

To finish, a brief comment on the basic reproduction ratio (R0),

arguably the most important epidemiological parameter in any

disease system, although it is not without its critics [42]. Robust

estimation of R0 is often difficult, especially with parasites with

complex life cycles. Roberts [43] described how R0 could be

estimated if prevalence data from foxes and small mammal

intermediate hosts were available together, along with a number of

assumptions regarding various transmission parameters. However,

when it is difficult to estimate R0, estimates of FOI become highly

relevant [37]. We have shown that with a relatively simple

transmission model empirically justified from study data, an

estimate of the FOI can be made, and how this can be practically

applied for optimizing the interval of baiting to lower the

prevalence of E. multilocularis in foxes.
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